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Usually the partitioning technique (PT) has been studied under two aspects: (i) as a
numerical tool for solving secular equations of high order, and (ii) as a theoretical method
related to the infinite-order perturbation theory and the iteration–variation methods. Here
it is shown that there exists a form of the PT equations which allows us to determine
explicitly the spectrum and eigenstates of the Hamiltonian operator for different forms of
potentials without the utilization of perturbative expansions or iterative equations of the type
E = f (E). As a first application of the new approach, we consider the hydrogen-atom in
strong magnetic fields (B ∼ 109 G).

1. Introduction

The vast majority of problems in quantum theory cannot be solved exactly. As
in all theories of physics approximate methods are therefore of great importance.
Perturbation theory [5,20,26], variational principle [4,24,27], generator coordinate
method [8], numerical techniques [15,21,26] are some of the procedures currently in
use for determining the energy eigenvalues for the one and two electron Schrödinger
equation in one, two and three dimensions. However, there are in the literature other
methods which, under practical standpoint, must be explored yet in order to show their
possible advantages to other procedures. One of these methods is the so-called parti-
tioning technique. In fact, during the years 1958–1965 Löwdin [16,17] was interested
in the partitioning technique (PT) as a valuable procedure to determine the solution of
the eigenvalue problem

H|Ψl〉 = El|Ψl〉 (1.1)

in quantum theory (H = Hamiltonian operator, H = H0 + V).
Löwdin’s studies, however, were basically restricted to the theoretical analysis in

order to show the connection of the PT approach with the infinite-order perturbation
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theory and the iteration–variation methods, and some applications have been made to
determine upper and lower bounds for eigenvalues [2,17]. In the years 1982–1987 the
PT procedure has been used [22,23] as a numerical tool for solving a secular equation
of high order.

The purpose of this paper is to show that it is possible by using a new form of
the PT equations to determine the eigenvalues and eigenkets of (1.1) explicitly. For
this we have modified the original development of the partitioning approach in two
simple aspects: (i) we have applied the partitioning technique directly to the auxiliary
problem H0|l〉 = E◦l |l〉 instead of equation (1.1), and (ii) we have used as reference
ket the eigenket |Ψl〉 of H, instead of |l〉. In consequence, differently from Löwdin’s
development, the reduced resolvent T in our approach does not depend on H, and
we can obtain a set of nonlinear algebraic equations for the wave operator matrix
elements wsl. Hence, we can determine El directly in terms of wsl and Vsl, potential
matrix elements. In order to emphasize here the difference between our formulation
and Löwdin’s derivation we call it the modified partitioning procedure (MPP).

This paper is organized as follows: In section 2, we present our modified parti-
tioning procedure and we obtain the fundamental equations for the determination of the
eigenvalues and eigenkets of H. In section 3, as an illustration, we apply our equations
to the quadratic Zeeman effect in the hydrogen-atom for magnetic fields in the range
known as strong fields (B ∼ 109 G). Finally, section 4 contains some concluding
remarks relative to extension of our method to include many-electron systems based
on the Hartree–Fock theory.

2. Modified partitioning procedure

We assume that the eigenvalues and eigenstates of H0 are known. The potential
V in H = H0 + V is not necessarily small. We want to determine the eigenvalues and
eigenkets of H. We have, with the usual notation,

H|Ψl〉 = El|Ψl〉, H0|l〉 = E◦l |l〉. (2.1)

We introduce the self-adjoint modified projection operators Q and P which define
certain subspaces Ha and Hb, respectively, in the total Hilbert space H , that is, they
satisfy

Q2 = cQ, Q+ = Q, PQ = QP = 0,
(2.2)

P2 = cP, P+ = P, P = c−Q,

with H = Ha ⊕Hb.
These operators Q and P correspond to projection operators introduced by

Löwdin [16], but with Q and P it is not necessary to suppose that the reference ket
is normalized (for example, if |η〉 is the reference ket 〈η|η〉 = c, we have Q = |η〉〈η|
and Q2 = cQ).
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An analysis of Löwdin’s development shows that his procedure is valid for any
H subjected to the condition that H is a self-adjoint operator bounded from below. In
particular, it can be applied to H ≡ H0. In this case, using our operators Q and P we
can introduce the reduced resolvent T by

T = P
[
αQ + P(ε−H0)P

]−1P, (2.3)

and the operator Ω by

Ω = (1 + TH0)Q. (2.4)

The new operators present the following properties:

TQ = QT = 0, TP = PT = cT,
(2.5)

ΩP = 0, QΩ = cQ,

which are easily established.
From equations (2.2) and (2.5) it follows that

(H0 − ε)Ω = Q(H0 + H0TH0 − ε)Q, (2.6)

or

H0Ω = εΩ (2.7)

if

Q(H0 + H0TH0 − ε)Q = 0, (2.8)

that is, Ω is an eigenoperator of H0 if ε is a root of equation (2.8). In this case, if
|τ〉 ∈ H and Q|τ〉 6= 0, we have that

|ϕε〉 = Ω|τ〉 = (1 + TH0)Q|τ〉

is an eigenket of H0 belonging to eigenvalue ε obtained from equation (2.8).
In order to proceed further, we define the modified projection operator Q by using

as reference ket |Ψl〉, i.e.,

Q = |Ψl〉〈Ψl|.

Since |Ψl〉 is an eigenket of H, we have (see equations (2.2) and (2.3))

T|Ψl〉 = 0,

and as H = H0 + V, we obtain

TH0|Ψl〉 = −TV|Ψl〉.

In consequence, using (2.4), (2.7) and (2.8) we can write

|l〉 = Ω|Ψl〉/c = (1− TV)|Ψl〉 (2.9)
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and

El = E◦l +
〈
Ψl

∣∣(1− VT)V
∣∣Ψl

〉
/〈Ψl|Ψl〉, (2.10)

where we have used that for |ϕε〉 = |l〉, ε = E◦l and Q2 = cQ with c = 〈Ψl|Ψl〉.
Introducing the modified wave operator w given by

w = (1− TV)−1, (2.11)

we obtain from equations (2.9) and (2.10), respectively,

|Ψl〉 = w|l〉 = (1− TV)−1|l〉 (2.12)

and

El = E◦l + 〈l|Vw|l〉/〈l|w+w|l〉. (2.13)

Equations (2.12) and (2.13) give the eigenkets (eigenvalues) |Ψl〉 (El) of H in
terms of the eigenkets (eigenvalues) |l〉 (E◦l ) of H0. They are the fundamental equations
of the modified partitioning technique.

It is evident that |Ψl〉 and El can be determined explicitly from equations (2.12)
and (2.13) if we know the modified wave operator matrix elements wsl = 〈s|w|l〉.

In order to determine wsl, we note the relation

w = 1 + TVw, (2.14)

obtained from (1 − TV)w = 1, and we consider the orthonormal complete set of
eigenkets of H0, {|ϕ〉} ≡ {|1〉, |2〉, . . . , |l〉, . . . , |s〉, . . .}. Hence, we have from (2.12),
(2.13) and the completeness relation

∑
k |k〉〈k| = 1 (k = 1, 2, . . .),

〈s|Ψl〉 = 〈s|l〉+
∑
k,m

〈s|T|k〉〈k|V|m〉〈m|w|l〉, (2.15)

or

wsl = δsl +
∑
k,m

TskVkmwml. (2.16)

To determine Tsk we consider the relations

〈Ψl| = 〈l|w+ = 〈l|+ 〈Ψl|VT,∑
k

|k〉〈k| = 1,

and

P
(
E◦l −H0

)
T = P.

It follows, after some algebraic development, that(
E◦l −E◦s

)
Tsk = δsk − 〈s|Ψl〉〈l|k〉/wll. (2.17)
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Thus, by using (2.16) we have that for s 6= l (l fixed, s = 1, 2, . . .),(
E◦l −E◦s

)
wslwll − wll

∑
m

Vsmwml + wsl
∑
m

Vlmwml = 0 (2.18)

with

wll −
∑
k

w2
kl = 0. (2.19)

The number of equations in the variables wsl in equations (2.18) and (2.19) is
infinite. In the applications we consider a subset of {|ϕ〉} with N eigenkets of H0.
Hence, the set of equations (2.18) and (2.19) has a number of equations equal to the
number of variables wsl. As consequence, we can determine wsl and write, from
equation (2.13),

El = E◦l +
N∑
k=1

Vlkwlk/wll, (2.20)

which is the explicit solution of equation (1.1) for the energy value. The corresponding
eigenket is written as

|Ψl〉 =
N∑
k=1

wlk|k〉. (2.21)

Concluding this section we note that our procedure is valid for any potential V
(small or large) whose matrix elements Vlk exist. In particular, it can also be applied
to systems with many electrons.

3. Application

Here, as an application, we specialize the general construction we developed
in section 2 to the study of the hydrogen-atom in strong magnetic fields. As it is
known [25] the electronic structure of the hydrogen-atom in a uniform magnetic field
remains one of the most important and studied problems in atomic physics. So, this
application can be a good test for our method. In section 3.1 we consider the case
where the basis set {|ϕ〉} is composed by eigenfunctions of H0, and in section 3.2 we
take for {|ϕ〉} an arbitrary basis set with a parameter α to be determined.

3.1. MPP with {|ϕ〉} a set of eigenfunctions of H0

We consider our set of nonlinear algebraic equations in wsl, formed by rela-
tions (2.18) and (2.19), to determine the ground-state energy of the hydrogen-atom in
strong magnetic fields (B ∼ 109 G). In this case, we have for H0 the Hamiltonian
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Table 1
Energy values (−E) in a.u. for the Zeeman effect in the ground-state of hydrogen-atom for different

number N of basis functions (3.2) and some field strength values.

γ \N 4 8 12 14 20 25

0.1 0.497518 0.497519 0.497519 0.497519 0.497519 0.497519
0.2 0.441443 0.441853 0.441981 0.442012 0.442064 0.442088
1.0 0.271236 0.273880 0.274719 0.274937 0.275287 0.275442

operator of the hydrogen-atom and for potential V, in atomic units and spherical co-
ordinates,

V =
(
γ2/8

)
r2 sin2 θ, (3.1)

where the values of γ range from 0.1 to 1.0, and γ = 1 corresponds to B = 2.35 ×
109 [18]. For the basis set {|ϕ〉}, in this section, we use the eigenfunctions of the
hydrogen-atom, that is (with the usual notation),

|ϕ〉 = |nlm〉 = Rnl(r)Ylm(θ,φ), (3.2)

with n = 1, 2, . . . , l = 0, 1, 2, . . . ,n− 1, −l 6 m 6 l.
In our calculations we have checked the convergence (see table 1) for the eigen-

values of El, by increasing the number of basis functions and comparing the obtained
eigenvalues with those from a more restricted basis. For the ground-state and the
values of γ in the range 0.1 6 γ 6 1.0 we have found that only l = 0 and l = 2
are important to assure convergence. We have included in the basis set n s- and n′

d-functions (1 6 n 6 12, 3 6 n′ 6 12). Our system of nonlinear algebraic equations
has been solved by using the Newton–Raphson algorithm [7].

Our results (MPPH) for the ground-state energy using 22 basis functions are
presented in table 3 as a function of γ. In this table our results are compared with
those obtained by Cabib, Fabri and Fiorio (CFF) [6], Praddaude (P) [18], Brandi
(B) [4], Aldrich and Greene (AG) [1], Friedrich (F) [11], Bender, Mlodinow and
Papanicolau (BMP) [3], Le Guillou and Zinn-Justin (LGZJ) [12], Rösner, Wummer,
Herold and Ruder (RWHR) [19], Fonte, Falsaperla, Schiffrer and Stanzial (FFSS) [10],
Hajj (H) [13]. The results we have obtained using for all γ the standard hydrogen-
atom wave functions can be improved by introducing, for each value γ, an optimized
orbital exponent on those functions. To analyze this aspect with MPP we use in the
next subsection another basis function set.

3.2. MPP with {|ϕ〉} an arbitrary basis set

We consider the hydrogen-atom in strong magnetic fields but for {|ϕ〉} we use
the functions

|ϕ〉 = |nlm〉 = Pnl(r,α)Ylm(θ,φ), (3.3)
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obtained from the functions (3.2) by using the transformation 1/n→ α, where α is a
variational parameter to be determined for each value of γ. The new functions (3.3),
for n increasing, are less diffuse than the standard hydrogen-atom wave functions.

Equations (2.18) and (2.20) are applied directly when the set of basis functions
{|ϕ〉} is formed by the eigenfunctions of H0. In other cases it is necessary to make
a little mathematical development to write (2.18) and (2.20) in terms of the matrix
elements of H = H0 + V. Specifically, corresponding to the relation (2.20), we obtain
(note that E◦l +

∑
k Vlkwlk/wll =

∑
k〈l|H0 + V|k〉wlk/wll =

∑
kHlkwlk/wll)

El =
∑
k

Hlkwlk/wll. (3.4)

Similarly, we get for relation (2.18):

wsl
∑
k

Hlkwkl + wll
∑
k

Hskwkl = 0. (3.5)

A direct calculation shows that, using the basis set (3.3), we have for El, as a
functions of α,

El =
∑
k

(
α2Hc

lk + αHn
lk + (1/α)Hz

lk

)
wlk/wll, (3.6)

where Hc
lk, Hn

lk and Hz
lk are matrix elements of the kinetic operator, electron-nucleus

interaction and electron-magnetic field term of the Hamiltonian H for α = 1, respec-
tively. With equation (3.6) we can determine for each γ an optimized value for α
using the condition

∂El
∂α

= 0. (3.7)

In consequence, for {|ϕ〉} an arbitrary basis set, our MPP algebraic system of nonlinear
equations is composed by relations (2.19), (3.5) and (3.7), and the variables are wlk
and α.

In the calculations with basis set (3.3) we have also analysed the convergence of
the eigenvalues El for γ in the range 0.1 6 γ 6 1.0. We have obtained that for this
case the values of l which are important to assure convergence are also l = 0 and l = 2.
In table 2 we show the energy convergence for several field strengths as a function of
the number N of basis functions. We can note that for the values of γ considered it is
sufficient to take only a basis with 20 functions and that the convergence turns more
slow with the increase of γ. This was expected because we are close to the region
γ > 2, where the effect of the magnetic field is dominating [18]. In this region, it is
convenient to consider for the basis functions the set of solutions of the free electron
in a magnetic field.

Our results (MPPα) with the basis set (3.3) are compared to others in table 3.
We note that these results (MPPα) with an optimized basis set are exact numerically
(see tables 2 and 3).



114 P.G. Logrado, J.D.M. Vianna / Partitioning technique revisited

Table 2
Energy values (−E) in a.u. for the Zeeman effect in the ground-state of hydrogen-atom for different

number N of basis functions (3.3) and some field strength values.

γ \N 6 12 20 30 42 64

0.1 0.497526 0.497526 0.497526 0.497526 0.497526 0.497526
0.2 0.490382 0.490382 0.490382 0.490382
0.3 0.479187 0.479187 0.479187 0.479187
0.5 0.447211 0.447211 0.447211 0.447211
0.7 0.405723 0.405724 0.405724 0.405724
1.0 0.329477 0.331051 0.331167 0.331168 0.331169 0.331169

Table 3
A comparison of the ground-state energy (−E) in a.u. calculated with our equations, using the stan-
dard hydrogen-atom wave function (MPPH) and using the basis set optimized (MPPα), with the re-
sults of Cabib, Fabri and Fiorio (CFF) [6], Praddaude (P) [18], Brandi (B) [4], Aldrich and Greene
(AG) [1], Friedrich (F) [11], Bender, Mlodinow and Papanicolau (BMP) [3], Le Guillou and Zinn-Justin
(LGZJ) [12], Rösner, Wummer, Herold and Ruder (RWHR) [19], Fonte, Falsaperla, Schiffrer and Stanzial

(FFSS) [10] and Hajj (H) [13].

γ CFF P B AG F BMP

0.1 0.49754 0.49753 0.49752 0.4975 0.497551
0.2 0.49038 0.49026
0.3 0.47920 0.47850
0.5 0.44724 0.44203
0.7 0.40571 0.39332
1.0 0.33120 0.33117 0.27551 0.3310 0.328 0.330616

γ LGZJ RWHR FFSS H MPPH MPPα

0.1 0.497526 0.497526 0.497526 0.49752 0.497526
0.2 0.490382 0.490382 0.49026 0.490382
0.3 0.47856 0.479187
0.5 0.447211 0.44209 0.447211
0.7 0.39848 0.405724
1.0 0.331169 0.331169 0.331169 0.331169 0.27544 0.331169

Our results indicate that the use of the modified partitioning technique can be of
interest in the study of physical systems with more electrons under the presence of
strong fields. In fact, this is the motivation for introducing the present treatment of
this classical problem of atomic physics. Works in this direction are in progress and
will be reported elsewhere.

One advantage of our method over the usual diagonalization procedure of Hamil-
tonian operator (UDPHO) is that whereas UDPHO is concerned with the calculation
of all eigenvectors and eigenvalues of H corresponding to a given expansion of |Ψ〉,
our set of nonlinear algebraic equations allows us to determine a particular eigenvalue
El and corresponding eigenvector |Ψl〉 of interest, since in our system of nonlinear
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equations the label l is fixed. In consequence, we can choose and/or optimize a basis
set for each eigenvalue El and eigenvector |Ψl〉.

With relation to the usual perturbation theory, our method presents the advantage
that it does not use in its development power series expansion in V, which sometimes
makes it necessary to rederive the perturbation series expansions for large-order be-
havior, when the term V increases [12,14]. On the contrary, the MPP can be applied
to any (small or large) potential V whose matrix elements Vlk exist.

4. Concluding remarks

In this paper we have reexamined the partitioning technique (PT) procedure.
Specifically, we have modified the development of the PT approach in two aspects:
(i) we have developed the partitioning technique directly to equation H0|l〉 = E◦l |l〉
instead of H|Ψl〉 = El|Ψl〉 (H = H0 + V), and (ii) we have used as reference ket the
true eigenket of H instead of |l〉. Our development shows that with these modifications
the PT procedure can be seen as an independent mathematical method to solve the
Schrödinger equation H|Ψl〉 = El|Ψl〉, i.e., it leads to a system of nonlinear algebraic
equations in the variables wsl (modified wave operator matrix elements) and the so-
lutions wsl of this system determine explicitly El and |Ψl〉 (see equations (2.20) and
(2.21)) independently of a perturbative power series expansion in V or a procedure
based on the relation E = f (E). In this sense our development is an improved for-
mulation of the partitioning technique procedure. As an illustration of our procedure
we have applied our equations to determine the ground-state energy of the hydrogen-
atom in strong magnetic fields (B ∼ 109 G) using two basis set {|ϕ〉}. The results
for the ground state energy using an optimized basis set show that our set of nonlin-
ear algebraic equations gives accurate results. In fact, our equations are general and
can be applied in principle to physical systems with more electrons and for different
forms of the potential (for example, they can be applied to the potentials indicated
by Witwit [26]). In particular, our method can be extended to include calculations
for many-body problems based on Hartree–Fock theory. For this, it is sufficient to
consider H0 =

∑n
i=1 F(i), where F(i) is the Fock operator and V = He −H0 with He

the electronic Hamiltonian given by

He =
n∑
i=1

h(i) +
n∑
i<j

1
rij

,

the first term being a sum of one-electron operators and the second term representing a
two-electron operator (n = number of electrons). Then, for the basis set {|ϕ〉} we can
consider {Φ0〉, |Φa

i 〉, |Φab
ij 〉, . . .}, where |Φ0〉 is the Hartree–Fock determinant, |Φa

i 〉 are
singly excited determinants, |Φab

ij 〉 are doubly excited determinants, etc., obtained from
the reference determinant |Φ0〉, and equations (2.19), (2.20) are applied directly. This
extension is now being worked out by the authors and the results will be published
elsewhere.
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